Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 342: 123003, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040183

RESUMO

Coral reefs are one of the most valuable yet threatened ecosystems in the world. Improving human wastewater treatment could reduce land-based impacts on coral reefs. However, information on the quantity and spatial distribution of human wastewater pollution is lacking. Here, we develop a spatial model linking residential human wastewater pollution (nitrogen and phosphorus/year) and conservation sectors [coral reefs] to better understand the relative differences in the distribution and efficacy of different sanitation services and their potential implications for conservation monitoring and management. We apply our model to Fiji, where ongoing initiatives and investments in wastewater treatment for human health could be leveraged to cost-effectively improve coral reef condition. We estimate that wastewater treatment plants account for nearly 80% of human wastewater nutrients released into surface waters. Wasterwater nutrient pollution is widespread, affecting 95% of reefs, but is concentrated across a few watersheds. Our spatially explicit approach can be used to better understand potential benefits and trade-offs between sanitation service improvements and coral reef health, helping to bridge the sanitation and conservation sectors as well as inform and prioritize on the ground action.


Assuntos
Antozoários , Recifes de Corais , Humanos , Animais , Ecossistema , Águas Residuárias , Saneamento , Conservação dos Recursos Naturais
2.
Science ; 379(6637): 1098-1099, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927022
3.
Curr Biol ; 33(5): 990-997.e4, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36787746

RESUMO

Food production, particularly of fed animals, is a leading cause of environmental degradation globally.1,2 Understanding where and how much environmental pressure different fed animal products exert is critical to designing effective food policies that promote sustainability.3 Here, we assess and compare the environmental footprint of farming industrial broiler chickens and farmed salmonids (salmon, marine trout, and Arctic char) to identify opportunities to reduce environmental pressures. We map cumulative environmental pressures (greenhouse gas emissions, nutrient pollution, freshwater use, and spatial disturbance), with particular focus on dynamics across the land and sea. We found that farming broiler chickens disturbs 9 times more area than farming salmon (∼924,000 vs. ∼103,500 km2) but yields 55 times greater production. The footprints of both sectors are extensive, but 95% of cumulative pressures are concentrated into <5% of total area. Surprisingly, the location of these pressures is similar (85.5% spatial overlap between chicken and salmon pressures), primarily due to shared feed ingredients. Environmental pressures from feed ingredients account for >78% and >69% of cumulative pressures of broiler chicken and farmed salmon production, respectively, and could represent a key leverage point to reduce environmental footprints. The environmental efficiency (cumulative pressures per tonne of production) also differs geographically, with areas of high efficiency revealing further potential to promote sustainability. The propagation of environmental pressures across the land and sea underscores the importance of integrating food policies across realms and sectors to advance food system sustainability.


Assuntos
Galinhas , Salmão , Animais , Alimentos Marinhos , Agricultura , Fazendas , Aquicultura
4.
Trends Ecol Evol ; 37(12): 1079-1091, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36182406

RESUMO

Connectivity underpins the persistence of life; it needs to inform biodiversity conservation decisions. Yet, when prioritising conservation areas and developing actions, connectivity is not being operationalised in spatial planning. The challenge is the translation of flows associated with connectivity into conservation objectives that lead to actions. Connectivity is nebulous, it can be abstract and mean different things to different people, making it difficult to include in conservation problems. Here, we show how connectivity can be included in mathematically defining conservation planning objectives. We provide a path forward for linking connectivity to high-level conservation goals, such as increasing species' persistence. We propose ways to design spatial management areas that gain biodiversity benefit from connectivity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema
5.
Conserv Biol ; 36(3): e13856, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34729816

RESUMO

Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral reefs (bioclimatic units [BCUs]) that are relatively less exposed to climate impacts and strongly connected to other coral reef systems. These reefs provide a proactive opportunity to secure a long-term future for coral reefs under climate change. To help guide local management efforts, we quantified marine cumulative human impact (CHI) from climate, marine, and land pressures (2013 and from 2008 to 2013) in BCUs and across countries tasked with BCU management. Additionally, we created a management index based on common management measures and policies for each pressure source (climate, marine, and land) to identify a country's intent and commitment to effectively manage these pressures. Twenty-two countries (79%) had increases in CHI from 2008 to 2013. Climate change pressures had the highest proportional contribution to CHI across all reefs and in all but one country (Singapore), but 18 BCUs (35%) and nine countries containing BCUs (32%) had relatively high land and marine impacts. There was a significant positive relationship between climate impact and the climate management index across countries (R2 = 0.43, p = 0.02), potentially signifying that countries with greater climate impacts are more committed to managing them. However, this trend was driven by climate management intent in Fiji and Bangladesh. Our results can be used to guide future fine-scale analyses, national policies, and local management decisions, and our management indices reveal areas where management components can be improved. Cost-effectively managing local pressures (e.g., fishing and nutrients) in BCUs is essential for building a climate-ready future that benefits coral reefs and people.


Identificación de Oportunidades de Gestión para Combatir las Amenazas Climáticas, Marinas y Terrestres en los Arrecifes de Coral Menos Expuestos al Clima Resumen La conservación de los arrecifes de coral es de suma importancia para mantener la biodiversidad marina y para sostener el medio de vida en muchas comunidades costeras. El cambio climático es una amenaza mundial para los arrecifes de coral; aun así, los investigadores han identificado un portafolio de arrecifes de coral (unidades bioclimáticas[UBCs]) que se encuentran relativamente menos expuestos a los impactos climáticos y están conectados a otros sistemas arrecifales. Estos arrecifes proporcionan una oportunidad proactiva de asegurar un futuro a largo plazo para los arrecifes de coral frente al cambio climático. Para ayudar a guiar los esfuerzos locales de manejo, cuantificamos el impacto humano acumulativo (IHA) sobre los ambientes marinos a partir de las presiones climáticas, marinas y terrestres (del 2008 al 2013) en las UBCs y en los países encargados del manejo de estas. Además, creamos un índice de manejo con base en las medidas y políticas comunes de gestión para cada fuente de presión (clima, ambiente marino, suelo) para identificar la intención y el compromiso de cada país para manejar de manera efectiva estas presiones. Veintidós países (79%) tuvieron incrementos en el IHA entre 2008 y 2013. Las presiones por el cambio climático tuvieron la contribución proporcional más alta al IHA en todos los arrecifes y en todos los países excepto uno (Singapur), pero 18 UBCs (35%) y nueve países que cuentan con UBCs (32%) tuvieron impactos terrestres y marinos relativamente altos. Hubo una relación positiva significativa entre el impacto climático y el índice de manejo climático entre los países (R2 = 0.43, p = 0.02), lo que potencialmente significa que los países con un mayor impacto climático están más comprometidos con su manejo. Sin embargo, esta tendencia estuvo impulsada por las intenciones de manejo climático en Fiyi y en Bangladesh. Nuestros resultados pueden usarse para orientar los análisis a fina escala, las políticas nacionales y las decisiones locales de manejo en el futuro. Nuestros índices de manejo también revelan áreas en donde se pueden mejorar los componentes gestores. El manejo rentable de las presiones locales (p. ej.: la pesca, los nutrientes) dentro de las UBCs es esencial para construir un futuro preparado climáticamente que beneficie a los arrecifes y a las personas.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Humanos
6.
Conserv Biol ; 36(4): e13874, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34907590

RESUMO

Management of the land-sea interface is essential for global conservation and sustainability objectives because coastal regions maintain natural processes that support biodiversity and the livelihood of billions of people. However, assessments of coastal regions have focused strictly on either the terrestrial or marine realm. Consequently, understanding of the overall state of Earth's coastal regions is poor. We integrated the terrestrial human footprint and marine cumulative human impact maps in a global assessment of the anthropogenic pressures affecting coastal regions. Of coastal regions globally, 15.5% had low anthropogenic pressure, mostly in Canada, Russia, and Greenland. Conversely, 47.9% of coastal regions were heavily affected by humanity, and in most countries (84.1%) >50% of their coastal regions were degraded. Nearly half (43.3%) of protected areas across coastal regions were exposed to high human pressures. To meet global sustainability objectives, all nations must undertake greater actions to preserve and restore the coastal regions within their borders.


costa, huella humana, impacto humano cumulativo, litoral, presión humana, restauración, tierras vírgenes Resumen El manejo de la interfaz entre la tierra y el mar es esencial para los objetivos mundiales de conservación y sustentabilidad ya que las regiones costeras mantienen los procesos naturales que sostienen a la biodiversidad y al sustento de miles de millones de personas. Sin embargo, los análisis de las regiones costeras se han enfocado estrictamente en el ámbito marino o en el terrestre, pero no en ambos. Por consiguiente, el conocimiento del estado general de las regiones costeras del planeta es muy pobre. Integramos la huella terrestre humana y mapas marinos del impacto humano cumulativo en un análisis global de las presiones antropogénicas que afectan las áreas costeras. De las áreas costeras de todo el mundo, el 15.5% tuvieron una presión antropogénica reducida, principalmente en Canadá, Rusia y Groenlandia. En cambio, el 47.9% de las regiones costeras estuvieron fuertemente afectas por la humanidad, y en la mayoría de los países (84.1%) >50% de sus regiones litorales se encuentran degradadas. Casi la mitad (43.3%) de las áreas protegidas en las regiones costeras tienen un grado de exposición a fuertes presiones humanas. Para cumplir los objetivos mundiales de sustentabilidad, todos los países deben emprender mejores acciones para preservar y restaurar las regiones litorales dentro de sus fronteras.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Canadá , Ecossistema
7.
J Environ Manage ; 304: 114276, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34915390

RESUMO

The 1972 World Heritage Convention (WHC) and 1994 Global Strategy aim to preserve the outstanding universal value of internationally important cultural and natural sites within a "representative, balanced and credible" network of highly-protected areas. Increasing human pressures and shortfalls in representation have been documented across the World Heritage network, particularly in terrestrial and cultural sites, threatening the integrity and primary goals of the WHC. However, the conservation status of current and tentative (i.e., proposed) marine natural World Heritage areas (mnWHA) remains relatively unknown. We assessed the extent of recent (2013) and historical (2008-2013) cumulative human impacts and several metrics of representation (country, continent, ecoregion, wilderness, and 'at-risk' species) within existing and tentative mnWHAs. We found moderate yet increasing cumulative human impacts across most existing sites, and high or very high impacts across the majority of tentative sites. Climate change impacts comprised nearly 75% of impact scores, on average, and differences between land- and marine-based impacts across sites could help prioritise management decisions. Over 75% of marine ecoregions and 80% of 'at-risk' species considered in this study have no representation within the existing sites. We outline how prioritizing representation across tentative sites for future World Heritage listing could greatly increase these metrics. We urge the WHC to adopt quantitative, systematic and transparent evaluations of how current and tentative sites contribute to the overarching goals of maintaining a representative World Heritage network and preserving outstanding universal value for future generations.


Assuntos
Efeitos Antropogênicos , Conservação dos Recursos Naturais , Biodiversidade , Mudança Climática , Ecossistema , Objetivos , Meio Selvagem
8.
Nat Food ; 3(10): 851-861, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37117898

RESUMO

Injustices are prevalent in food systems, where the accumulation of vast wealth is possible for a few, yet one in ten people remain hungry. Here, for 194 countries we combine aquatic food production, distribution and consumption data with corresponding national policy documents and, drawing on theories of social justice, explore whether barriers to participation explain unequal distributions of benefits. Using Bayesian models, we find economic and political barriers are associated with lower wealth-based benefits; countries produce and consume less when wealth, formal education and voice and accountability are lacking. In contrast, social barriers are associated with lower welfare-based benefits; aquatic foods are less affordable where gender inequality is greater. Our analyses of policy documents reveal a frequent failure to address political and gender-based barriers. However, policies linked to more just food system outcomes centre principles of human rights, specify inclusive decision-making processes and identify and challenge drivers of injustice.

9.
Glob Chang Biol ; 27(23): 6206-6216, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34488246

RESUMO

Marine species are declining at an unprecedented rate, catalyzing many nations to adopt conservation and management targets within their jurisdictions. However, marine species and the biophysical processes that sustain them are naive to international borders. An understanding of the prevalence of cross-border species distributions is important for informing high-level conservation strategies, such as bilateral or regional agreements. Here, we examined 28,252 distribution maps to determine the number and locations of transboundary marine plants and animals. More than 90% of species have ranges spanning at least two jurisdictions, with 58% covering more than 10 jurisdictions. All jurisdictions have at least one transboundary species, with the highest concentrations of transboundary species in the USA, Australia, Indonesia, and the Areas Beyond National Jurisdiction. Distributions of mapped biodiversity indicate that overcoming the challenges of multinational governance is critical for a much wider suite of species than migratory megavertebrates and commercially exploited fish stocks-the groups that have received the vast majority of multinational management attention. To effectively protect marine biodiversity, international governance mechanisms (particularly those related to the Convention on Biological Diversity, the Convention on Migratory Species, and Regional Seas Organizations) must be expanded to promote multinational conservation planning, and complimented by a holistic governance framework for biodiversity beyond national jurisdiction.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Austrália , Ecossistema , Peixes , Oceanos e Mares
10.
Glob Chang Biol ; 27(20): 5238-5252, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34350684

RESUMO

Sediment runoff from disturbed coastal catchments is a major threat to marine ecosystems. Understanding where sediments are produced and where they are delivered enables managers to design more effective strategies for improving water quality. A management strategy is targeted restoration of degraded terrestrial areas, as it provides opportunities to reduce land-based runoff from coastal areas and consequently foster coral reef conservation. To do this strategically, a systematic approach is needed to identify watersheds where restoration actions will provide the highest conservation benefits for coral reefs. Here, we develop a systematic approach for identifying global forest restoration opportunities that would also result in large decreases in the flux of sediments to coral reefs. We estimate how land-use change affects sediment runoff globally using high-resolution spatial data and determine the subsequent risk of sediment exposure on coral reefs using a diffusion-based ocean transport model. Our results reveal that sediment export is a major issue affecting 41% of coral reefs globally. The main coastal watersheds with the highest sediment export are predominantly located in Southeast Asian countries, with Indonesia and the Philippines accounting for 52% of the sediment export in coastal areas near coral reefs. We show how restoring forest across multiple watersheds could help to reduce sediment export to 63,000 km2 of coral reefs. Although reforestation opportunities in areas that discharge onto coral reefs are relatively small across watersheds, it is possible to achieve large sediment reduction benefits by strategically targeting watersheds located in regions with a high density of corals near to the coast. Thus, reforestation benefits on coral reefs do not necessarily come from the watersheds that produce the highest sediment export. These analyses are key for generating informed action to support both international conservation policy and national restoration activities.


Assuntos
Antozoários , Recifes de Corais , Animais , Conservação dos Recursos Naturais , Ecossistema , Florestas
12.
Conserv Biol ; 33(6): 1350-1359, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31131932

RESUMO

Marine protected areas (MPAs) are a critical defense against biodiversity loss in the world's oceans, but to realize near-term conservation benefits, they must be established where major threats to biodiversity occur and can be mitigated. We quantified the degree to which MPA establishment has targeted stoppable threats (i.e., threats that can be abated through effectively managed MPAs alone) by combining spatially explicit marine biodiversity threat data in 2008 and 2013 and information on the location and potential of MPAs to halt threats. We calculated an impact metric to determine whether countries are protecting proportionally more high- or low-threat ecoregions and compared observed values with random protected-area allocation. We found that protection covered <2% of ecoregions in national waters with high levels of abatable threat in 2013, which is ∼59% less protection in high-threat areas than if MPAs had been placed randomly. Relatively low-threat ecoregions had 6.3 times more strict protection (International Union for Conservation of Nature categories I-II) than high-threat ecoregions. Thirty-one ecoregions had high levels of stoppable threat but very low protection, which presents opportunities for MPAs to yield more significant near-term conservation benefits. The extent of the global MPA estate has increased, but the establishment of MPAs where they can reduce threats that are driving biodiversity loss is now urgently needed.


Sesgos de Cuantificación en la Ubicación de Áreas Marinas Protegidas en Relación con las Amenazas Abatibles a la Biodiversidad Resumen Las áreas marinas protegidas (MPAs, en inglés) son un sistema de defensa crítica contra la pérdida de biodiversidad en los océanos del mundo, pero para hacer realidad los beneficios de conservación de corto plazo, estas áreas deben establecerse en donde ocurren la mayoría de las amenazas para la biodiversidad y en donde puedan mitigarse. Cuantificamos el grado al cual la fundación de MPAs se ha enfocado en amenazas abatibles (es decir, amenazas que pueden abatirse solamente por medio de MPAs manejadas efectivamente) al combinar los datos de amenazas para la biodiversidad marina espacialmente explícita en 2008 y en 2013 y la información sobre la ubicación y el potencial que tienen las MPAs para detener las amenazas. Calculamos una medida de impacto para determinar si los países están protegiendo proporcionalmente más ecoregiones de alta o baja amenaza y comparamos los valores observados con las áreas protegidas asignadas al azar. Descubrimos que la protección cubría <2% de las ecoregiones en aguas nacionales con niveles altos de amenazas abatibles en 2013, lo cual es ∼59% menos protección en las áreas de alta amenaza que si las MPAs se hubieran ubicado al azar. Las ecoregiones con una baja amenaza relativa tuvieron 6.3 veces más protección estricta (categorías I-II de la Unión Internacional para la Conservación de la Naturaleza) que las ecoregiones con amenaza alta. Treinta y un ecoregiones tuvieron niveles altos de amenazas abatibles pero muy baja protección, lo cual representa oportunidades para que las MPAs tengan más beneficios significativos a corto plazo. La extensión del conjunto global de MPAs ha incrementado, pero la fundación de MPAs en lugares donde pueden reducir laamenazas que causan la pérdida de biodiversidad es una necesidad urgente en día.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Viés , Oceanos e Mares
14.
Curr Biol ; 28(15): 2506-2512.e3, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30057308

RESUMO

As human activities increasingly threaten biodiversity [1, 2], areas devoid of intense human impacts are vital refugia [3]. These wilderness areas contain high genetic diversity, unique functional traits, and endemic species [4-7]; maintain high levels of ecological and evolutionary connectivity [8-10]; and may be well placed to resist and recover from the impacts of climate change [11-13]. On land, rapid declines in wilderness [3] have led to urgent calls for its protection [3, 14]. In contrast, little is known about the extent and protection of marine wilderness [4, 5]. Here we systematically map marine wilderness globally by identifying areas that have both very little impact (lowest 10%) from 15 anthropogenic stressors and also a very low combined cumulative impact from these stressors. We discover that ∼13% of the ocean meets this definition of global wilderness, with most being located in the high seas. Recognizing that human influence differs across ocean regions, we repeat the analysis within each of the 16 ocean realms [15]. Realm-specific wilderness extent varies considerably, with >16 million km2 (8.6%) in the Warm Indo-Pacific, down to <2,000 km2 (0.5%) in Temperate Southern Africa. We also show that the marine protected area estate holds only 4.9% of global wilderness and 4.1% of realm-specific wilderness, very little of which is in biodiverse ecosystems such as coral reefs. Proactive retention of marine wilderness should now be incorporated into global strategies aimed at conserving biodiversity and ensuring that large-scale ecological and evolutionary processes continue. VIDEO ABSTRACT.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Oceanos e Mares , Meio Selvagem , Biodiversidade , Ecossistema
15.
PLoS One ; 12(2): e0171591, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199341

RESUMO

Protected Areas (PAs) are a central part of biodiversity conservation strategies around the world. Today, PAs cover c15% of the Earth's land mass and c3% of the global oceans. These numbers are expected to grow rapidly to meet the Convention on Biological Diversity's Aichi Biodiversity target 11, which aims to see 17% and 10% of terrestrial and marine biomes protected, respectively, by 2020. This target also requires countries to ensure that PAs protect an "ecologically representative" sample of their biodiversity. At present, there is no clear definition of what desirable ecological representation looks like, or guidelines of how to standardize its assessment as the PA estate grows. We propose a systematic approach to measure ecological representation in PA networks using the Protection Equality (PE) metric, which measures how equally ecological features, such as habitats, within a country's borders are protected. We present an R package and two Protection Equality (PE) measures; proportional to area PE, and fixed area PE, which measure the representativeness of a country's PA network. We illustrate the PE metrics with two case studies: coral reef protection across countries and ecoregions in the Coral Triangle, and representation of ecoregions of six of the largest countries in the world. Our results provide repeatable transparency to the issue of representation in PA networks and provide a starting point for further discussion, evaluation and testing of representation metrics. They also highlight clear shortcomings in current PA networks, particularly where they are biased towards certain assemblage types or habitats. Our proposed metrics should be used to report on measuring progress towards the representation component of Aichi Target 11. The PE metrics can be used to measure the representation of any kind of ecological feature including: species, ecoregions, processes or habitats.


Assuntos
Conservação dos Recursos Naturais/métodos , Animais , Antozoários/fisiologia , Biodiversidade , Recifes de Corais , Ecossistema , Modelos Teóricos , Oceanos e Mares
16.
Sci Rep ; 7: 39670, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054550

RESUMO

Natural and anthropogenic stressors can cause phase shifts from coral-dominated to algal-dominated states. In the Caribbean, over-fishing of large herbivorous fish and disease among the long-spined urchin, Diadema, have facilitated algal growth on degraded reefs. We found that diminutive species of urchin and parrotfish, which escaped die-offs and fishing pressure, can achieve abundances comparable to total herbivore biomass on healthier, protected reefs, and exert sufficient grazing function to pre-empt macroalgal dominance following mass coral mortality. Grazing was highest on the most degraded reefs, and was driven by small herbivores that made up >93% of the average herbivore biomass (per m2). We suggest that previously marginal species can achieve a degree of functional redundancy, and that their compensatory herbivory may play an important role in ecosystem resilience. Management strategies should consider the potential role of these additional herbivore functional groups in safeguarding natural controls of algal growth in times of increased uncertainty for the world's reefs.


Assuntos
Recifes de Corais , Herbivoria , Alga Marinha/crescimento & desenvolvimento , Animais , Biomassa , Peixes/fisiologia , Ouriços-do-Mar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...